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Exact propagator and eigenfunctions for multistable models 
with arbitrarily prescribed N lowest eigenvalues 

H R Jauslin 
Departement de Physique Thkorique, Universitt de  Gentve, CH-1211 Gentve 4, 
Switzerland 

Received 2 December 1987 

Abstract. We present a method to construct potentials for Schrodinger equations with 
some prescribed features, for which all eigenfunctions and the time-dependent propagator 
can be explicitly calculated. The prescribed features can be formulated by choosing 
arbitrarily the N lowest eigenvalues. Alternatively one can prescribe some qualitative 
behaviour for the potential, like the number and relative depths of wells and barriers. The 
results can also be applied to the construction of Fokker-Planck models with prescribed 
properties and explicitly calculable transition probability density. The method is based on 
ideas of supersymmetric quantum mechanics and the theory of solitons, that can be traced 
back to the work of Darboux and Crum. 

1. Introduction 

Many properties of quantum systems, such as those at low temperatures, depend 
essentially only on the shape of the potential at low energies, or on the lowest 
eigenvalues and eigenfunctions. In general it is not possible, even in one-dimensional 
models, to determine the propagator and eigenfunctions for a given problem. It is 
thus of interest to be able to construct potentials that have a prescribed set of N lowest 
eigenvalues, for which these quantities can be calculated exactly. The problem can 
also be formulated in terms of the construction of a potential having some prescribed 
qualitative features, such as the number and depth of wells, or even some approximate 
quantitative behaviour at low energies. 

The present approach starts with a potential Vo for which the corresponding 
propagator and eigenfunctions are explicitly known. Vo is then modified in such a 
way as to add N arbitrary eigenvalues at the bottom of the spectrum. This step involves 
the knowledge of the solutions of the original Schrodinger equation at energies that 
are smaller than the bottom of the spectrum. The propagator and eigenfunctions for 
the new potential V,  can be expressed in terms of the original ones, involving only 
derivatives and integrals. Figure 1 shows some examples of potentials VN constructed 
with this method starting from V, = 0. 

In a closely related context, the method allows one to construct multistable Fokker- 
Planck models, for which the time-dependent transition probabilities can be calculated 
explicitly. 

The basic ideas of this method can be traced back to the work of Darboux [ 11 and 
Crum [2]. These ideas have found applications in supersymmetric quantum mechanics 
[3] and in the study of solitons and inverse scattering theory [4,5]. Some special cases 
of this method have been treated in the iiterature: eigenfunctions have been calculated 
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Figure 1. ( a )  Potentials V, constructed by adding to V, = 0 the following eigenvalues A,:  
(A) -1, -1.66; (B) -1, -1.66, -2.637; (C )  -1, -1.66, -2.766, -3.269. (The curves are 
shifted in the V, direction for clarity.) ( b )  Potential V ,  constructed by adding to V, = 0 
the eigenvalues A, = --pf, for pt = 1, 1.2, 1.4, 1.6, 1.8, 2.0, 2.2. 

in [6-91, and time-dependent solutions and propagators were obtained in [ 10,111. In 
[ 12,131 expressions for transition probabilities in bistable Fokker-Planck models were 
obtained for particular initial conditions. 

2. Darboux-Crum transformation 

We consider a Schrodinger operator (in the Hilbert space L,(R, dx))  

d2 
dx2 

H-=--+ V-(X) 

that has a ground state cpo with energy Eo,  which we write as 

cpo=e-W. (2.2) 

( H- - E,) = A+A (2.3) 

Then H- admits the following representation (with primes denoting derivatives) 

with 

We define a new operator 

d2 
dx2 

H+=AA'+E~=--+ v+ 

(2.4) 

where 

V+ = V- + 2 W"= - V- + 2 Eo + 2 Wf2. 
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Remark that V, can also be written as 

V- = W” - W“+ E,, V+ = Wt2+ W”+ E,,. (2.7) 

H+ is called the supersymmetric partner of H - .  Their spectral properties are related 
as follows. 

( 1 )  The spectrum of H ,  is equal to that of H- but without the eigenvalue E,,.  
(2) If f ( x )  satisfies the equation 

H-f = rf (2.8) 
where r can be 

d 
dt either a real number A or the operator U- with U =  {:I (2.9) 

then g = Af satisfies 

H,g = Tg. (2.10) 

Conversely, if g satisfies (2.10) then h = A t g  satisfies (2.8). 
The two values of (+ =i ,  -1 correspond to the Schrodinger and the diffusion 

(-Fokker-Planck) equations respectively. 
Property (1) is proven in [4]. The proof can be sketched as follows. First one 

shows that Eo is not an eigenvalue of H,: by (2.4) the only candidate for eigenfunction 
is q;’ , which is not normalisable. Then one considers the polar decomposition 

A =  U(AI At = ( A (  U’ (2.11) 

which gives 

H- - E,, = A + A  = 1 ~ 1 ~  
H + - E o = A A t =  U(A(*U‘=  U(H--E,,)U’ 

(2.12) 

(2.13) 

where \A\ = (AiA)1’2,  and U is isometric ( U’ = U-’) and can be written as 

U = A( H- - E,) -’’2. (2.14) 

As (2.14) indicates, U is defined only in K ; ,  the orthogonal complement of the 
eigenspace of H- corresponding to E o .  Moreover, U maps K ;  onto the whole space 
L2: 

U :  K i +  L2 

U ’ :  L2+ K t ,  
(2.15) 

Thus, (2.13) states the unitary equivalence between H+ and the restriction of H- to 
the subspace K ; ,  which implies property ( 1 ) .  

Property (2) is verified by insertion. 
This allows us to relate the normalised eigenfunctions q ~ ( + ) , ,  and ( P ( - ) , ~  (for n 3 1)  

corresponding to the common eigenvalue En of H- and H,: 

(2.16) 

(2.17) 

Property (2) allows us to express the time-dependent solutions associated with H- in 
terms of time-dependent solutions associated with H,, and vice versa. 
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3. Adding one eigenvalue 

We start with a Schrodinger operator 

d2 
dx2 

H,= --+ V,(x) (3.1) 

with a potential that grows asymptotically at *cc as 

v, - C*XV" e*, 77*30. (3.2) 

We also require that the asymptotic behaviour of its first N derivatives is given by 
differentiating both sides of (3.2). This includes potentials with a purely discrete 
spectrum as well as, for example, the free particle. We will denote by A. the lowest 
point of the spectrum. 

We will construct a new Hamiltonian HI that has the same spectrum as Ho but 
with one supplementary eigenvalue A I  < A o .  The idea is to identify ( Ho - A , )  with the 
( H ,  - E,) of the last section; the corresponding H -  is then identified as the new HI.  
We want to represent Ho as 

( H , - A , ) = A , A :  (3.3) 

with 

Then 

d2 
dx2 

H ~ = - - +  V,(X)=A:A,SA, 

will have the desired properties. 
Equation (3.3) together with (3.4) is equivalent to 

V , - h , = (  W:)2+ Wy 

or further 

(-$+ v0)9;:,,= A*Cpo(l:,o. 

(3.4) 

(3.5) 

(3.7) 

Thus, all that is needed in order to add one eigenvalue is to find a positive solution 
of the original Schrodinger equation (corresponding to the Hamiltonian (3.1)) for a 
A I  < ho ,  such that its inverse is normalisable. As we will see, for each A I  there is a 
one-parameter family of such solutions. The new potential is given by 

VI = vo-2 w:: 
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4. Asymptotic properties 

In this section we state some results on the existence of solutions of (3.7) that satisfy 
the required conditions, and characterise them completely. More details and sketches 
of the proofs are given in the appendix. 

(1) There are two linearly independent positive solutions of (3.7) that are uniquely 
defined by the asymptotic conditions 

h,(x) ---- x+ --CO ( Vo- A ~ ) - ’ ’ ~  exp(jxdy(Vo-A,)1’2) + O  (4.1) 

h ,  and h,  go exponentially to 03 in the opposite limits (see appendix, equations (A6) 
and (A7)). 

(2) With these two functions we can construct a one-parameter family of solutions 

go(X; A I ,  ai) = aih,(x)+ h 3 ( X )  (4.3) 

that, for a ,  > 0, are everywhere positive and whose inverse is square integrable. We 
can thus use go for the addition of an eigenvalue. This family, together with h,  and 
h,, are all the positive solutions of (3.7) (up to multiplication with a constant), because 
h ,  and h,  are linearly independent, and a negative a1 would lead to negative values 
for x+co. 

Remark that if Vo is symmetric and we set a ,  = 1 then go is the (unique) even 
solution, whereas a1 = -1 gives the odd solution. 

(3) The new potential VI has the same asymptotic behaviour (3.2) as Vo. This is 
a consequence of (3.8) and property (k) of the appendix. 

5. Adding two eigenvalues 

One could now iterate the procedure of § 3 and add eigenvalues A l , A 2 , .  . . , A N  
successively. This involves the determination of a positive solution of a new Schrodinger 
equation at each step. Since the potentials become more and more complicated this 
may look like a hopeless task. However, it turns out that i t  is sufficient to know the 
solutions h,(x;  A )  and h3(x; A )  of the original Ho for A = A l ,  A* ,  . . . , A N ,  and that one 
can construct H N  in one step. 

In order to explain the procedure, we consider first the addition of a second 
eigenvalue A 2 .  Let go(x; A I ,  a l )  be a positive solution for A = A ,  of 

as defined in (4.3). Define 

d2 
dx 

V I =  V o - 2 ~ l n g o  

We know from § 2 that, if fo(x; A )  is a solution of (5.1) for an arbitrary A, then a 
solution of 

Hlf = A f  (5.3) 
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is given by 

f i (x ;  A )  = cAv0(x; A )  

where c is a constant and 

In (5.6) we have introduced the notation 

. . .  

%(fI,f2,. . * , f ) = d e t  . ( 5 . 8 )  

and no= 1. In fact, all the solutions can be obtained this way. The general positive 
solution g, is given by 

where a2 > 0 is an arbitrary constant. Notice that the sign in -a2 has the effect that 

(5.10) 

This implies, by the arguments of the appendix, that g, is positive and its inverse is 
normalisable. 

Therefore we can construct the new potential with two added eigenvalues as 

d2 
d x  

V2= V,-2,lng1 

d2 
dx 

= Vo - 2 7 (In g, + In go) 

Its ground state and the eigenfunction corresponding to A ,  are 

Ip (2 ) ,h2  = c2,2g;l 

(D(Z),hj = C2,1A:gi1 

(5.11) 

(5.12) 

(5.13) 
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where c2,2 and c2,1 are normalisation constants. The normalised eigenfunctions for the 
eigenvalues E,, > A I  are given by 

(5.14) 

=(E,, -A2)-”2(En -Al)-”2AiA;p(~),,, (5.15) 

= Zz,nBi(P(o),n. (5.16) 

(P(z ) .n  = (En - A2)-1’2A:(P(l),n 

In the last equality we have introduced the notation 

B’, = AhAk-,  . . . A: 

with 

and for the normalisation 
N 

Z N , , , - 1  n (E,,-Ai)-”*. 
i = l  

Notice that the operator B: acting on a function f can be represented as 

ndgO(Al,al), go(A2, -4, f )  
n2(go(Ai, ai), go(A2, -a2)) ‘ 

B l f  = 

(5.17) 

(5.18) 

(5.19) 

(5.20) 

6. Adding N eigenvalues 

The results of the previous section are easily extended to the simultaneous addition 
of N eigenvalues. Given N arbitrary values A,> A ,  > A , > .  . . > A N  and N positive 
constants a l  , . . . , a N ,  we construct the potential 

d’ 
dx2 VN = V0-2-lnflN(gO(Al ,+a1), gO(A2, -a2), gO(A3, +a3), . . .  gO(AN, ( - l ) N ” a N ) ) *  

(6.1) 

The corresponding Hamiltonian HN has the same spectrum as Ho plus the eigenvalues 
A l ,  A 2 , .  . . , A N .  Its ground state is 

(6.2) 

where gN-.l is the general positive solution of H N - l g N - l  = hNgN-1, which is given by 
(6.6). The eigenfunctions corresponding to A I ,  A 2 , .  . . , A N - ,  are 

(6.3) 

- 1  
( P ( N ) , A N  = C N N g N - 1  

( P ( N ) , A ,  = cN,~AL . . . A;+igL!i. 

( P ( N ) , n  = Z N , n B h ( P ( 0 ) , n  (6.4) 

The normalised eigenfunctions for the eigenvalues E,, > A I are given by 

(with the notation introduced in (5.17) and (5.19)). 
The operator B’, can be represented by 
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This relation follows immediately from 

(6.6) 
fl,(go(A,, al),' * ' 9 go(ArV, ( - l ) N + l a N ) )  

g N - I  = 
flnN-i(go(Ai, ai), a . .  , go(Arv-1,  ( - l I N a ~ - i ) )  

which is obtained by induction from the results of 9 5 .  (This is done, for example, in 
[5, p 1761 for the case Vo = 0, but the algebra is the same in the general case.) 

Therewith we obtain (6.1) by 

d2 C l ,  
V, = VN-1-2-ln- 

dx2 f lN-l  

d2 f lN Cl,-, 
= V N - 2 - 2 ~ l n - -  

dx CIN-l  C l N M 2  

d2 
= V o - 2 y I n C l , .  

d x  

The rest is an immediate consequence of the results of the previous sections. 

7. Propagators 

In this section we show that the time-dependent propagators G, and GN-l correspond- 
ing to the Hamiltonians HN and H N - l  are related by the two following equivalent 
equations: 

- a - ' e ( t ) A ~ ( x ) A k ( x o )  ds  GN-l(x, xo, s )  exp[a-'A,(t -s ) ] .  (7.2) I,' 
By iteration we can express GN in terms of the known Go. The result is given in (7.21) 
and (7.22). The validity of (7.1) and (7.2) can be checked directly by insertion. They 
were constructed as follows. 

( 1 )  For the construction of (7.1) we forget the Hilbert space structure and just 
consider the differential equations. In 0 2 we saw that the time-dependent solutions of 

(7.3) 
d uz $N (4 t )  = H N $ N  (4 t )  

can be expressed in terms of solutions of 

(7.4) 
d 

$N-I(X,  t )  = H N - I $ N - l ( X ,  t )  
Q t  

by 

$N(X, 2)  = Ak$N-I(X, 1). (7.5) 

Notice that in (7.5) we do not ask that the $ are in the Hilbert space. 
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Thus, in order to relate the propagators G ,  and G N - I ,  we need to determine the 
initial condition + N - l ( ~ ,  0) that gives 

A ? , + N - l ( x , O ) =  + N ( x , o ) =  6 ( X - X o ) .  (7.6) 
The inversion of (7.6) gives 

G N ( X ,  xo,  t )  = e ( t ) A L ( X ) + N - I ( X ,  t )  
00 

= A ? , ( x )  dz G N - I ( ~ ,  Z ,  t ) + ~ - i ( z , O ) .  (7.8) I_, 
Inserting (7.7) into (7.8) we obtain (7.1). 

general solutions of (7.3) and (7.4) are related by 
(2) To obtain the second expression (7.2) we work in the Hilbert space. There the 

+ N - I ( x ,  t )  = A N + N ( X ,  t )  (7.9) 

+N ( x ,  t )  = AL + N - 1 (x, t )  + c? [ N ) ,A  N ( exp ( CT-l A N s  ) (7.10) 

where c is a constant which is given, e.g. for the initial condition (CIN(x ,  0) = S ( x  - x o ) ,  

c = ( + N ( x ,  O), C P ( N ) , A ~ ( X ) ? =  C P ( N ) , A N ( X O ) *  (7.11) 

The last term in (7.10) must be added because all the functions of the form A?,+ are 
orthogonal to p ( N ) , A N :  

( A k + ,  ( P ( N ) , A N ) = ( ~ ,  A N P ( N ) , A ~ ? = o *  (7.12) 

Every function + of L2 (i.e. every admissible initial condition) can be expressed as 
+ = AN+, with the appropriate choice of 4 in L 2 .  However, the functions of the form 
+ = Ah+ give only all the functions that are orthogonal to ' p ( N ) , A N .  Notice that in 
(7.5) the necessity of this supplementary term is avoided by allowing functions that 
are not in the Hilbert space. 

Now, to obtain the second expression (7.2), instead of the inversion (7.7) we let 
AN act on (7.10) and get 

(7.13) 

by 

( H N - I  - - A N ) $ N - I ( X ,  0) = A N + N ( X ,  0). 

The operator ( H N - l  - A N )  is invertible and we can write 

+ N - I ( x ,  0) = R N - I A N + N ( X ,  0) (7.14) 

where R N - I  = ( H N - l  - A N ) - '  is the resolvent, whose integral kernel is 
cc 

I ? ~ - ~ ( X ,  y )  = - - (+-I  J ds G N - l ( x ,  y,  s) exp(-a-'ANs). (7.15) 

G N ( x ,  x o ,  t )  is the solution with initial condition S ( x  - x,,). By the preceding arguments 
it can be written as 

GN ( X ,  X O  9 t )  = e( ICP ( N ) . A N  CP [ N I , A N  ( X 0 )  exP(  AN^) + e( t ) A I N ( X )  4 N -  I ( 4  X O  7 t )  
(7.16) 
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Yhere j N W 1 ( x ,  xo, t )  is the solution of (7.4) with initial condition (according to (7.14)) 
t , b N - I ( ~ ,  xo,  0 )  = R N - I A N ( ~ ) S ( ~ - ~ o ) .  It is given by 

$ N - l ( x ,  xo,  t )  =exp(a- lHN-l t )RN-lANS(x-xo)  
n 

= R N - ~  J-, dy G N - , ( X ,  y ,  t ) ~ , ~ ( y  -xo)  

= R N - ~  J-, d y  S ( Y  - x o ~ t , ( y ) ~ N - l ( x ,  y ,  t >  
cc 

00 

= A ~ N ( X ~ )  J-, dz&,-l(X, ZKL(Z, x0,  t )  

= -a-IAh(x0) d s  GN-l (x ,  xo, s) exp[a-'AN(t - s ) ] .  

(7.17) 
Jt 

For the last equality we have used (7.15) and the identity 
m 

GN-I(x,xO,S)= dzGN-I(X, z , s - ~ ) G N - ~ ( ~ , x ~ ,  t ) .  (7.18) 

This, together with (7.16), gives the result (7.2). 

purely discrete spectrum, using the representation 
We remark that this result can also be obtained in a simple way in the case of a 

(7.19) 

(7.20) 

(3) We remark finally that after performing the iteration of (7.1) the result can be 
written compactly as 

00 

G ( X ,  x0; t )  = ( - u N ~ t , ( x )  Jxy dzN JzI dZN-l . . . Jz2 d z ,  G ~ ( X ,  z l ,  t )  
N 

x n ( g 2 l ( z i + - ~ ) g i - ~ ( z i ) )  
i = l  

with z ~ + ~  = xo. The iteration of (7.2) gives (with s N + ,  = t )  

(7.21) 

(7.22) 
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8. Conclusion 

We have thus a method to construct families of exactly solvable models depending on 
2N free parameters. One can use this freedom to construct potentials that have certain 
qualitative features that mimic models for particular physical problems. 

The asymptotic behaviour is the same within a family. Thus the modifications 
occur in relatively localised regions. For instance, one observes that, if two eigenvalues 
are put close to each other, the potential develops a barrier between two wells, as one 
may expect from the theory of tunnel splitting. 

The case Vo = 0 is related to soliton solutions of the Korteweg-de Vries equation 
[14]. Since the number of solitons is equal to the number of eigenvalues, an appropriate 
choice of the parameters can give one potential well per eigenvalue. 

The choice of Vo is limited in practice by the need to know explicitly the general 
solution of the corresponding stationary Schrodinger equation as well as the propagator. 
Some examples are Vo = 0, Vo = ax2 and Vo = ax2 + bx-2 (see [15,16]). 

We remark finally that this method allows us also to construct Fokker-Planck 
models with prescribed properties for which the transition probability density and the 
eigenfunctions can be explicitly calculated. The transition probability density corre- 
sponding to the Fokker-Planck equation 

d d d2 
d t  dx dx 
- P =  -- (KP)  f, P 

with 

is given by 

For example we consider the potential Vl constructed by adding one eigenvalue 
A l  = -p2  to the free particle ( Vo = 0). The general positive solution of (3.7) is 

go(x; -p2 ,  a ) = c h ( p x ;  a ) = $ ( a  e/*x+ee-CLX). (8.4) 

V, = cup/ch(px; a )  ( 8 . 5 )  

( P l , h l ( X )  = (2pu(u)”2/ch(px; (8.6) 

The new potential is (by (3.8)): 

and the normalised ground state 

The propagator can be easily calculated using (7.1): 

1 ( x - x  ) 2  CL e x p b 2 t )  G(x, xO; t )  = - 
(4vt)’I2 exp( -*) ‘4 ch(pxo; a )  ch(px; a )  

2/.Lt + (x  - xo) 2pt-(x-xo)  
(8.7) 

where erf denotes the error function. 
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We can now consider the Fokker-Planck equation (8.1) with drift 

Its stationary state is 

and the transition probability density is given by 
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Appendix. Asymptotic properties 

In this appendix we discuss some asymptotic properties of the solutions of the 
Schrodinger equation 

-g”+ Vg = Ag A < A 0  (‘41 1 
where V has the asymptotic behaviour (3.2) and A is smaller than the lowest point of 
the spectrum A o .  We use some classical results that can be found, e.g., in [17-201. 

(a) A < A o  implies that g has at most one zero and it is simple. The proof can be 
found, e.g., in [17, p 2081. 

( b l )  There are solutions h , ,  h2 that have the following asymptotic behaviour at -a: 

(b2) There are solutions h3, h4 that have the following asymptotic behaviour at +CO: 

h 4 ( ~ )  --++-.+ x-+m ( V-A)-’14 enp([xdy(V-A)l12)+a. ( ‘ 45 )  

This is proven, e.g., in [19, pp 190-2021. 
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(c) h ,  and h3 are uniquely defined by (A2) and (A4). (This is not the case for h2 
and h4.) 

Proof: If there were another linearly independent solution with the same asymptotic 
behaviour, then all solutions would tend to zero in that limit, which is in contradiction 
with (A3) and (A5). 

(d) h ,  is square integrable in an interval (-CO, x , )  for some small enough x ,  and 
h, is square integrable in an interval ( x , ,  CO) for some large enough x 3 .  This is an 
immediate consequence of the exponential decay. 

(e) The following are pairs of linearly independent solutions: ( h ,  , h 2 ) ,  ( h , ,  h4), and 
( h , ,  h3). 

Proof: For the first two pairs it is evident from the asymptotics. If h ,  and h3 were 
linearly dependent, they would be square integrable at both limits, and thus they would 
be eigenfunctions, which contradicts A < A,,. 

(f) The following behaviour follows from (b)-(e): 

where c ,  and c3 are constants. 
(8) h ,  and h, are everywhere positive. 

Proof: Consider h ,  . For x + -CO it is positive by definition. Since we know that it can 
have at most one zero (counting multiplicity), we must exclude two situations: (i) h,  
becomes negative and approaches zero at +CO; (ii) h,  + -CO for x + +CO (plus the 
analogue cases for h3) .  (i) can be excluded because otherwise h ,  would be an eigenfunc- 
tion. To exclude (ii) we first note that h ,  and h,  cannot both have zeros, since otherwise 
one could construct a linear combination a h ,  + bh, which, for a ,  b > 0 and b small 
enough, would have two zeros. Assume then, e.g., that h ,  has a zero and h, none. 
The choice of a negative a and a small enough b > O  would lead again to a solution 
with two zeros. The analogue argument for the reversed situation completes the proof. 

(h) Therefore, the one-parameter family of solutions 

A x ,  A, Cf) = 4 ( x )  + h, (X)  C f > O  (A81 

is also everywhere positive. As we mentioned in Q 4, these are all the positive solutions. 
(i) Properties (b) and (f) imply that the g- '  are normalisable. This gives us the 

one-parameter family of positive solutions that we can use to add an eigenvalue. 
6 )  For 1x1 large enough, h ,  and h3 as well as their first derivatives are monotonic 

functions. 
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Prooj Equation (Al),  together with A < A o  and the positivity of hl  and h 3 ,  imply that 
there is a y such that for all 1x1 > (yl  one has h;  > 0 and h{ > 0, which implies the 
monotonicity of the first derivatives. Finally we show that asymptotically they have a 
constant sign, which implies the monotonicity of h ,  and h, for large 1x1. Consider h ,  . 
There is an x, < -ly/ ,  at which h ;  > 0. It then decreases toward zero as x + -a without 
ever becoming negative, since then it would stay negative and h ,  would diverge. On 
the other side there is an x2 > l y / ,  at which hi > 0. Then it stays positive for all x > x2. 
Analogous arguments apply to h i .  

(k) This allows us to obtain the asymptotics of the derivatives from the asymptotics 
of the functions [20, pp 49-53]: 

----+ x-t-02 [-aV’( V-A)-”‘+( V-A)”4] exp( [xdy(V-A)1/2)  + O  
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